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Abstract

Background: Lagerstroemia speciosa (L.) Pers. has medicinal importance. Bioactive phytochemicals isolated from
different parts of L. speciosa, have revealed hypoglycemic, antibacterial, anti-inflammatory, antioxidant and hepato
protective properties. Despite one report from Philippines detailing the use of L. speciosa as curative for fever and
as well as diuretic, there is no experimental evidence about the hepatoprotective activity of the flower extracts.

Methods: Several spectroscopic methods, including GC-MS, were used to characterize phytochemicals present in
the petal extract of L. speciosa. Ethanol extract of petals was evaluated for anti-oxidant and free radical scavenging
properties by using methods related to hydrogen atom transfer, single electron transfer, reducing power, and metal
chelation. This study has also revealed the in vitro antioxidant and in vivo hepatoprotective properties of petal
extract against carbon tetra chloride (CCly)-induced liver toxicity in Swiss albino mice. Hepatoprotection in CCl,
-intoxicated mice was studied with the aid of histology and different enzymatic and non-enzymatic markers of liver
damage. Cytotoxicity tests were done using murein spleenocytes and cancareous cell lines, MCF7 and HepG2.

Result: GCMS of the extract has revealed the presence of several potential antioxidant compounds, of them y-
Sitosterol and 1,2,3-Benzenetriol (Pyrogallol) were the predominant ones. The antioxidants activities of the flower-
extract were significantly higher than curcumin (in terms of Nitric oxide scavenging activity; p = 0.0028) or ascorbic
acid (in terms of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) assay; p = 0.0022). The damage control by the flower extract
can be attributed to the reduction in lipid peroxidation and restoration of catalase activity. In vitro cytotoxicity tests
have shown that the flower extract did not affect growth and survivability of the cell lines. It left beyond doubt that
a flower of L. speciosa is a reservoir of antioxidant and hepatoprotective agents capable of reversing the damage
inflicted by CCl-intoxication.

Conclusion: Results from the present study may be used in developing a potential hepato-protective health drink
enriched with antioxidants from Lagerstroemia speciosa (L.) Pers.
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Background

Lagerstroemia speciosa (L.) is popularly called as “Jarul”
in West Bengal, India and it belongs to the family
Lythraceae. It is known as Pride of India, and also called
Queen’s Flowers or Queen Crape Myrtle in English. This
plant is widely distributed in the South East-Asian coun-
tries, Philippine and India [1]. In India, L.speciosa is
highly abundant in the Western and Eastern Ghats and
sub-tropical Himalayan regions; flowers are produced in
excess by the plant (Additional file 1: Figure S1) for a
short period of time but remains unutilized or underuti-
lized. However, the people of South-east Asia used the
leaves of L. speciosa for the treatment of diabetes melli-
tus and obesity [2]. The aqueous extract of leaves of L.
speciosa leaves possess potent antioxidant and free rad-
ical scavenging activities by scavenging 2,2-Diphenyl-1-
Picrylhydrazyl (DPPH) and superoxide radical as well as
inhibiting lipid peroxidation [3]. Moreover, the bioactive
phytochemicals isolated from different parts of L. spe-
ciosa, have revealed hypoglycemic, antibacterial, anti-
inflammatory, antioxidant and hepato protective proper-
ties [4-9]. Flowers of several plants were reported as
good source of phenolic compounds and antioxidants,
and also reported for treating some chronic diseases re-
ported by earlier authors [10]. In Philippines, the decoc-
tion of flowers of L. speciosa is used as diuretic and also
for treating fevers [11, 12]. Hence, in this study we opted
to explore the pharmacological properties of the flower
extract of L. speciosa.

The mechanisms of generation of Reactive Oxygen
Species (ROS), and scavenging of ROS, operate within
living cells. However, damages are inflicted on several
cellular macromolecules when there is an imbalance be-
tween the generation of ROS and the rate of scavenging.
ROS have direct and indirect relationships with oxida-
tion of cellular biomolecules resulting in many health
disorders such as neurodegenerative disease, hyperten-
sion, inflammation, diabetes, cancer and aging [13]. Liv-
ing organisms respond to ROS by producing antioxidant
enzymes as well as they possess genetically regulated
adaptive mechanisms against ROS. However, once the
free radicals and ROS overwhelm the regulatory ability
of the body, a state of oxidative stress ensues. Supple-
mentation of anti-oxidants, in the normal diet, helps
control the ROS-mediated macromolecular damages
[14]. The use of natural compounds as complementary
and alternative drug is on rise due to the lesser side ef-
fects compared to synthetic drugs. At present, natural
antioxidants are also used as alternative to synthetic
antioxidants in the cosmetic, pharmaceutical and in the
food industries [15]. Moreover, presence of considerable
quantity of antioxidants in Plant Part Extract (PPE) has
always been a dependable clue for the investigators to
hypothesize its usefulness in prevention and/or treatment
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of human diseases in which free radicals and other ROS
have been associated. Therefore, hepatoprotective
potentiality of PPE is generally evaluated against CCl,- in-
duced liver damages in murine model [16, 17]. Several
lead chemicals like silymarin, p-sitosterol, betalain,
neoandrographolide, phyllanthin, andrographolide, curcu-
min, picroside, hypophyllanthin, kutkoside, and glycyrrhi-
zin that have demonstrable hepatoprotective properties,
were characterized from several PPEs [18]. High antioxi-
dant activity in flower extracts of different plants such as
Tecoma stans, Hibiscus sabdariffa, Calendula officinalis,
and Crocus sativus, were screened for hepatoprotective ac-
tivity by the previous research and proved viable. [19-22].

In the present study, in vitro antioxidant potential of
80% ethanolic extract of flower of L. speciosa was deter-
mined in addition to the quantification of phenolic and
flavonoid contents. Prevention of hepatic cell damage by
flower-extract in CCly-intoxicated mice was demon-
strated. Cytotoxicity tests of the flower-extract were con-
ducted using murein spleenocytes and cancareous cell
lines, MCF7 and HepG2. Since flower extract was found
safe in cell-line study, we propose a future development
of a suitable health drink from L. speciosa petals, a
widely accessible natural bio-resource (Additional file 2:
Figure S2).

Methods

Preparation of plant extract

The flowers were collected in the month of March (aver-
age number of flowers per tree remain higher than Feb-
ruary or April) 2014, from Lagerstroemia speciosa (Jarul)
trees within the campus of North Bengal University,
West Bengal, India. The tree (Accession number- 10512)
was authenticated by the Department of Botany, North
Bengal University. The petals of the flower were sepa-
rated and washed thrice with distilled water to remove
dust. The washed petals were sun dried and treated at
50 °C for two hours to eliminate moisture. Dried petals
were then milled with a grinder (Maharani, India, Model
—Sujata Dynamix). The fine powdered petal was stored
in a refrigerator at —20 °C. One hundred gm of the dried
powder was stirred in 1 L of 80% ethanol for 1 hour.
The mixture was refluxed for 2 hours in soxhlet. After
2 hours, the mixture was centrifuged at 8000 rpm for
15 minutes. Supernatant was collected and concentrated
by Rotary evaporator (45 °C) and finally freeze dried.
The extract was stored in air-tight vessel at —20 °C for
further studies.

Determination of antioxidant activity (in vitro)

In vitro assays

The total antioxidant, DPPH radical scavenging, hy-
droxyl radical scavenging, superoxide radical scavenging,
nitric acid radical scavenging, singlet oxygen scavenging,
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reducing power, Fe>* chelation, peroxynitrite scavenging
and hypochlorous acid scavenging activities were deter-
mined by following the previous reported methods with
minor modification[23, 24].

Determination of erythrocyte-membrane stabilizing
activity

The erythrocyte membrane stabilizing activity was per-
formed by following a standard method as described by
Dey et al. [25]. Briefly, varying concentrations of LFE
(0-200 pg/ml) was added to the mixture of 50 mM
phosphate buffer (0.5 ml; pH 7.2), distilled water (1 ml),
10% RBC suspension (0.25 ml PBS), 12 mM EDTA
(100 pl), NBT (150 pl of 1% solution), and riboflavin
(100 ul), and kept under bright light for 30 sec and incu-
bated for 30 min at 50 °C followed by centrifugation at
1000 rpm for 10 min. The absorbance of the supernatant
was measured at 562 nm. The same assay was done with
the standard compound, quercetin.

Determination of total phenolic content
The total phenolics content of LFE was determined using
Folin-Ciocalteu method [23]. A standard curve prepared
with known quantities of gallic acid (R, = 0.9468) was used
to measure the phenolic content of LFE.

Determination of total flavonoid content

The total flavonoids content was determined with alu-
minium chloride (AICl3) described by Hazra et al. [23].
The flavonoid content was ascertained from the stand-
ard curve prepared with known quantities of quercetin
(R2 =0.9947).

Determination of cytotoxicity

MTT Cytotoxicity assay for murine spleenocytes

The spleen was separated from a sacrificed Swiss albino
mice. Cell suspension (2 x 10° cells/ml) was prepared in
RPMI- 1640 medium supplemented with 50 U/ml peni-
cillin, 50 U/ml streptomycin, 50 U/ml nystatin and 10%
EBS as per reported method.EZcount ™ MTT Cell Assay
Kit (HiMedia CCKO003) was used, following manufac-
turers instruction, to determine the cytotoxicity. The
percentage of cytotoxicity was calculated using the for-
mula: (Y — X) + Y x 100 [where Y is the mean optical
density of the control (DMSO treated cells); and X is the
mean optical density of the treated cells with LFE].

Determination of effect of LFE on cancerous cells
following MTT assay

The effect of LFE on cancerous cell lines was measured
using a known MTT-assay protocol as described by
Denizot & Lang [26] but with minor modifications. Two
different cancerous cells, human breast adenocarcinoma
cell line (MCF 7) and human hepatocarcinome cell line
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(HepG,) were obtained from National Centre for Cell
Science, Pune, India. Both the cell lines were treated
with different concentrations of LFE in this study.

Determination of in-vivo antioxidant activity of LFE
Maintenance of Swiss albino mice

Swiss albino mice (6—8 weeks) of both sexes (equal number
of mice from each sex) were maintained individually (one
animal per cage in order to prevent aggression, if any, of
one towards the other of the same sex or opposite) inside
the cage bins (Tarson, India) with rice husk bedding in the
animal enclosure of the Department of Biotechnology,
University of North Bengal by maintaining proper photo-
period (12 h), temperature (25 +2° C) and humidity (55 +
5%). The animals were provided pellet food (Pranav Agro
Pvt. Ltd. India) and filtered (Aquaguard Eureka Forbes) tap
water ad libitum. All experiments were approved by the
ethical committee University of North Bengal (NO.840/ac/
04 CPCSEA; date: 15.09.2010).

Determination of acute toxicity of LFE

Acute toxicity of LFE was studied following OECD in
full guidelines (test 423: Acute oral toxicity — Acute
toxic class method; 2002) [OECD Library]. Mice were
divided into four groups (n=6) and fasted overnight
prior to the experiment. LFE was administered orally at
250, 500, 1000 and 1500 mg/kg body weight (bw) dose.
The experimental mice were carefully observed for de-
velopment of any clinical or toxicological symptoms at
different time-period, 0.5, 2, 4, 8, 24 and 48 h.

CCl, intoxication of experimental mice followed by
treatment with LFE or silymarin

Swiss albino mice, male or female, were randomly dis-
tributed into 5 groups (n = 6) and for consecutive 10 days
they received treatments once per day as per design
illustrated below.

The group that received normal saline was used as
control. The other groups were : (i) CCl, group which
received 1:1 (v/v) CCly in olive oil; (ii) Silymarin group
that received 1:1 (v/v) CCly in olive oil and 100 mg/kg
bw silymarin; (iii) Lower dose (LD) of LFE treated group
which received 1:1 (v/v) CCly in olive oil and 100 mg/kg
bw LFE; and (iv) higher dose (HD) of LFE treated group
which received 1:1 (v/v) CCly in olive oil and 250 mg/kg
bw LFE.

After cardiac punctures of the anesthesized mice (for
collection of blood) made on 11th day (i.e. 24 h after the
last treatment), the animals were sacrificed. Blood was
allowed to clot for 60 min at room temperature (20 °C)
and then serum was separated by centrifuging at
1000 rpm for 5 min. Serum was used to study marker
enzymes specific to liver. The liver was surgically re-
moved from the anesthesized animals after the cardiac
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puncture and before the final sacrifice. Surgically sepa-
rated livers were washed with double distilled water to
remove blood and homogenized tissues were used for
antioxidant enzymatic assays. Liver tissues were col-
lected in Bouin’s solution for histological studies.

Liver function test

The serum samples from each group were used to study
Acid Phosphotase (ACP), Alkaline phosphatise (ALP),
Aspartate aminotransferase (AST), Alanine aminotransfer-
ase (ALT) and total protein using commercially available
kits (Biosystems; 11548, 11592, 11830, 11832, 11800).

Determination of Catalase activity (CAT), lipid
peroxidation activity (LPO) and reduced Glutathione
(GSH) determination

CAT activity was measured by the method described by
earlier authors [27]. Lipid peroxidation was quantified by
thiobarbituric acid (TBA) reaction with malondialdehyde
(MDA). The amount of MDA was assessed by measuring
the absorbance of supernatant at 540 nm at room
temperature against an appropriate blank [27]. Glutathione
was determined by the modified method of Ellman [28].

Histological studies

Livers were removed from the animals of the in vivo ex-
periments after collection of blood and were fixed over-
night in 10% buffered formalin. The samples were
subjected to dehydration and the embedded in paraffin.
Thin sections (4 pum) of the paraffin embedded livers
were cut by microtome and then de-waxed in xylene,
rehydrated in a series of different grades of alcohol and
then washed with distilled water for 5 min. Subse-
quently, the sections were stained with haematoxylin for
40 s and counterstained with eosin for 20 s. The sections
were dehydrated in graded alcohol series and washed in
xylene. The slides were observed using Magnus trinocu-
lar microscope MLX-TR (Olympus microscopes) for
signs of necrosis, portal inflammation, vascular conges-
tion, fatty infiltration, vacuolar degeneration, leukocyte
infiltration, loss of structure of hepatic nodules and so
forth.

Spectroscopic characterization of LFE

All UV-vis spectra were recorded in the range of 200-
800 nm at room temperature with UV-1700 Spectrom-
eter (Jasco Make, Tokyo, Japan). IR spectra of LFE
obtained with Shimadzu FT-IR (Japan) were monitored
by mulling in KBr. The Energy-dispersive Spectroscopy
(EDS) was done with JEOL Model JED — 2300 to analyse
the presence of different elements in the LFE.
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GC-MS analysis of LFE

LFE was dissolved in n-hexane and the mixture was centri-
fuged thrice at 12,000 rpm for 15 min. The clear super-
natant was used for GC-MS analysis. Agilent 5975
CGCMS system (Agilent Technologies, USA) attached with
HP-5 ms Capillary Column (30 m x 0.25 mm id. x
0.25 um film thickness) and equipped with inert MSD triple
axis mass detector condition edation trap 200 °C, transfer
line 280 °C, electronenergy70eV (vacuum pressure-2.21e-
0.5 Torr) was used for analysis. The carrier gas, helium,
was used at a flow rate of 1 ml/min. 2 ml sample was
injected in a split less mode. The column temperature was
set at 60 °C for 1 min followed by 5 °C/min up to 250 °C.
The major and essential compounds in LFE were identified
by the retention times and mass fragmentation patterns
using Agilent Chem Station integrator and the database of
National Institute of Standard and Technology (NIST) with
a MS library version2011.

Statistical analysis

Assays were carried out in triplicate for all the experi-
ments. The results are expressed as mean and standard de-
viation values (mean + SD). Differences between means
were determined by the analysis of variance (ANOVA),
which were analyzed with SPSS v. 1. Paired ‘t’ test was
done using Ky plot 5.0 (kyplot.software.informer.com/5.0/).

Results

In vitro antioxidant activity

The free radical scavenging activities of LFE in dose
dependent manner and the differences in activities com-
pared with standard compounds per test under varying
doses were statistically interpreted (Fig la—k). The half
maximal inhibitory concentration (ICsq) of LFE or the
corresponding reference compounds is shown in Table 1.
LFE showed lower ICs, value than ascorbic acid, manni-
tol and curcumin in DPPH (p = 0.0022), hydroxyl radical
(p =0.00001) and nitric oxide free radical (p=0.002)
scavenging assays respectively; and found comparable
with superoxide radical shown by quercetin (p =0.52)
and total antioxidant activity shown by trolox (p = 0.6).

Determination of reducing power

The reducing power of the LFE was determined. It was
found that reducing capacity of the LFE was dose-
dependent and comparable to the reference compound,
ascorbic acid (Fig. 1k).

Determination of Phenol content and flavonoids in LFE
The total amount of phenolic content present in ethano-
lic extracts of L. specioa was found to be 44.66 mg/ml
gallic acid equivalent per 100 mg plant extract. The total
flavonoid content of the LFE was 45.33 + 0.004 mg/ml
quercetin equivalent per 100 mg plant extract.
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(See figure on previous page.)

Fig. 1 Free radical scavanging activity of Lagerstroemia flower extract (LFE). a Total antioxidant assay; b DPPH radical scavenging activity; ¢ Singlet
oxygen scavenging activity; d Superoxide radical scavenging activity; e Peroxynitrite radical scavenging activity; f Nitric oxide scavenging activity;
g (i) and (ii). Fe chelation activity; h Hydroxy radical scavenging; i Hypocholorous radical scavenging activity; j Erythrocyte membrane stabilizing
activity; and k Reducing power assay. Paired ‘t' test was done to interpret significant difference between effect of LFE and the known standard;

*** p<0.001; ¥, p<001; and *, p < 0.05

Cytotoxicity and MTT assay

Treatment of cancerous cell lines, MCF-7 and HepG2,
with LFE at different concentration from 0 to100 pg/ml
showed no effect on the growth and survivability. Cyto-
toxicity of LFE was also evaluated by using murine
spleenocytes and cytotoxic effect was not observed up-to
treatment of 200 ug/ml of LFE in spleenocytes.

Hepatoprotective activity of LFE

Acute toxicity study In the experimental mice, no signs
of mortality were observed up to 1500 mg LFE/kg BW
(highest dose used in this study). So, dosages of 100 mg/kg
(low dose) and 250 mg/kg (high dose) were selected for the
in-vivo hepatoprotective treatment.

Body and liver weight changes

Changes of the body and liver weight after the treatment
of LFE are shown in Table 2. Significant weight loss was
observed in CCly treated group whereas weight gain was
observed in the control and silymarin group; but inter-
estingly no significant weight gain was noticed in the ex-
perimental group. Hence, the percentage body weight
change of CCl, treated group was highest compared to
the control, standard and experimental group.

Liver marker enzyme and biochemical parameters

In this study, liver marker enzymes were estimated to
obtain a clear picture of the medicinal potentiality of
LFE in case of hepatic injury. The effects of CCl, and

subsequent administration of silymarin and LFE on the
Acid phosphatase (ACP), Alkaline phosphatase (ALP),
Aspartate transaminase (AST), Alanine transaminase
(ALT) and protein level and percentage changes were
shown in the Table 3. The levels of all the marker en-
zymes tested were found to be increased (except protein)
on CCly administration and subsequently decreased with
silymarin or LFE treatment.

Lipid peroxidation (LPO), enzymatic catalase (CAT), and
non-enzymatic reduced glutathione (GSH) level antioxidant
assays

Significant inhibitions of LPO (p<0.001), enzymatic
CAT (p<0.005) and non — enzymatic GSH (p <0.001)
occurred in CCly intoxicated mice when compared with
control (Fig. 2). LFE treatment enabled significant in-
crease in % inhibition of LPO (p < 0.001), CAT (p <0.01)
and GSH (p<0.01) compared to CCl4 treated mice
(Fig. 2a).0On the other hand, silymarin treatment has
similarly led to significant increase in % inhibition of
LPO (p<0.001), CAT (p<0.01) and GSH (p<0.001)
compared to CCl4 treated mice (Fig. 2b).

Histological comparison between liver tissue of CCl,-
intoxicated and CCl,-intoxicated but silymarin or LFE
treated mice

The histological injury was observed and counts in the liver
tissue of CCly-intoxicated and CCly -intoxicated but sily-
marin or LFE treated (low dose or high dose) mice were
represented as injury score (Additional file 3: Table S1).

Table 1 Half maximal inhibitory concentration (ICso) value of LFE and standards compounds for different free radical scavenging

assays

SNo Assay Standard compound Calculated 1Cs, Standard Calculated 1Csq LFE 2-sample t test
(p value)

1 DPPH Ascorbic acid 11.30+1.23 323+£0.7 0.002

2 Superoxide radical Quercetin 63.83+25 65.57 34 0.52

3 Singlet Oxygen Lipoic acid 131.21+83 162.72+42 0.02

4 Total antioxidant assay Trolox 326+ 1.7 389+05 06

5 Hypochlorous scavenging activity Ascorbic acid 87.72+49 12403 +9.1 0.009

6 Hydroxyl radical Mannitol 3329335 12475+£58 0.00001

7 Nitric oxide Curcumin 109.60 + 6.1 5886+75 0.0028

8 Peroxynitrite radical Gallic acid 59165+ 139 5004122 0.003

9 Erythrocyte membrane stabilizing activity Quercetin 94.74£55 15248 £49 0.0008

10 Fe chelation EDTA 2537 %35 118771+£124 0.0062
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Table 2 Comparision of body and liver weight of CCl, induced with control (untreated), LFE treated and silymarin treated groups

Parameters (units) Control Cdl, Sylimarin LFE Low Dose LFE High Dose
(100 mg/kg body weight) (250 mg/kg body weight)
Initial body weight (g) 21.70+048 22314026 2237 +£046 2203 +£046 2207 £0.71
Final body weight (g) 2328042 2081 +0.74 2331+£0.39 2238+0.70 2217 £0.66
Body weight change (%) 6.79 6.74 4.20 1.59 045
Liver weight (g) 486+0.11 546 +0.09 459+0.22 503+0.14 490+ 0.08
Relative liver weight (g) 20.88 2624 19.69 2248 22.10

The haematoxalin — eosin staining of liver tissue sections
clearly displayed differences resulting from damages
inflicted by CCly. The liver tissue sections of the control
group showed well maintained hepatocellular integrity,
healthy cellular architecture, and clear cytoplasm with
prominent nucleus (Fig 3a) while signs of tissue damages
were evident in CCly treated mice liver sections (Fig. 3b)
including signs of fibrosis (Fig. 3c and Additional file 4:
Figure S4). On treatment of silymarin, the signs of healing
of the damaged tissue were evident (Fig. 3d). Low dose
treatment (100 mg/kg body weight) of LFE helped to re-
duce the damage but to a lesser extent when compared to
silymarin treatment (Fig. 3e). Comparatively, treatment
with higher dose of LFE (250 mg/kg body weight) has
shown better recovery (Fig. 3 f). Total damage score was
very high in CCl, intoxicated mice (23) compared to con-
trol (2), silymarin group (7) and LFE treated group LD (16)
and HD (9). (Additional file 3: Table S1).

Furier Transform Infrared (FTIR) spectroscopy

On analyses of FTIR spectra several intense peaks corre-
sponding to the defined functional groups were noted. It
indicated the presence of alcohols, phenols, carboxylic
acid, within range of 3000-3550 cm™, aldehydes, ketones,
carboxylic acid at 1708 cm ™', amide bonds at 1604 cm ™,
amines, sulfones, sulfomyl chloride at 1316 cm™, alcohols,
and carboxylic acids at 1176 cm™ (Additional file 5:
Figure S5).

Energy dispersion spectroscopy

The elemental composition of the LFE was determined
by EDS (Additional file 6: Figure S6). The intense signals
in the range of 0-0.5 keV —strongly suggests that carbon
and oxygen were the major elements.Additionally, peak
for potassium element was also found. Again the ED
spectra have revealed absence of heavy metal.

GC-MS analysis

GC-MS analysis (Additional file 7: Figure S7) of LFE
has enabled identifying several small compounds of di-
verse chemical nature (Table 4), of which many of them
are reported to possess distinct and definitive pharmaco-
logical activities.

Discussion

Interest in antioxidants of natural origin as food and
health supplements has increased much because of their
potential to prevent and to reduce the risk of several dis-
eases without any toxic effect [29]. The plant species, L.
speciosa (L.) Pers, in the 1990’s, has attracted attention
of the scientists worldwide because of its special thera-
peutic properties particularly for diabetes, obesity, and
renal disorders [30, 31]. Although, different vegetative
parts as well as seeds of this plant were explored for po-
tential antioxidant agents [6, 7] but, only a single report
exists that has mentioned the antioxidant activity of L.
speciosa flowers [32]. Generally, antioxidant activities

Table 3 Extent of variation(s) in biochemical and enzymatic parameters in different groups treated with CCl, or silymarin or LFE. The

data represents mean + SD of six independent observations

Parameters (Units) Control Ccdl, Silymarin LFE (Low Dose) LFE (High Dose)
ALP (KA) 775+0.17 2852+ 187 ** 1050+ 1.61 N 1848+ 133 ** 1299+ 0.22 **
ACP (KA) 406+048 735+0.11 ** 16.55+043 ** 1435+ 034 *** 10.79 £ 0.50 **
AST (u/ml) 61.78+248 13321 + 3.94** 7526 +3.29 12627 +2.73 86.12+4.29
ALT (u/ml) 5127 +£158 138.29+483 6828 +3.97 10993 +3.75 81.28+4.17
Protein (g/dl) 761x£0.27 442+030* 740+030 N 474 +0.10 ** 550+0.19 *

N.S. P> 0.05 When compared with control, *P < =0.05 When compared with control, ** P < =0.01 When compared with control, *** P <=0.001 When compared

with control
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Fig. 2 Hepatoprotective effect of Lagerstroemia flower extract (LFE) or silymarin (SYL) in CCl, treated mice. a Protective effect of LFE on catalase
(CAT) activity, reduced glutathione (GSH) and Lipid peroxidation (LPO) in CCl, treated mice. b Protective effect of silymarin on catalase (CAT)
activity, reduced glutathione (GSH) and Lipid peroxidation (LPO) in CCl, treated mice group. Comparisons were made with (i) control (CON); (ii)
CCl, treated (no protection) (CON) for statistical inference (t' test for paired comparison) to interpret significant difference (Data represented as
Mean + SD of six observations. *, p < 0.05, **, p < 0.01 and ***, p <0.001.)

Fig. 3 Photomicrographs: histological sections of mice liver samples. Pictures were taken under original magnification of 400X. a Liver section
from the control group demonstrating normal liver architecture with intact nucleus (IN), and normal sinusoids (NS); b Liver section from CCl,
induced damaged liver demonstrating highly deformed liver architecture with round congested portal vein (PV), bile duct proliferation (BdP), fatty
lesion due to intensive fatty infiltration (Fl), sign of necrosis (N), dilated sinusoid (SD), leukocyte infiltration (LI); ¢ Liver section from CCl, induced
damaged liver demonstrating fibrosis (FB); d Liver section from Silymerin treated group demonstrating improved hepato-cellular architecture with
normal sinusoids and intact nucleus (IN); e Liver section from low dose LFE (100 mg/kg of body weight) treated group showing sign of necrosis
(N) [of lesser degree compared to the CCl, group]; f Liver section from high dose LFE (250 mg/kg of body weight) treated group showing
improved liver architecture with normal sinusoids (NS) and intact nucleus (IN)
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Table 4 Phytochemicals identified in the ethanolic extract of the flower of Lspeciosa by GC-MS analysis

SI. No. Compound name Chemical formula RT

1. 2,6-Nonadienal, 3,7-dimethyl- Cy1Hig0 5.60
2. N-[4-(4-Chlorophenyl)isothiazol-5-yl)-1-methylpiperidin-2-imine CysH16CINSS 5.84
3. 2-Furancarboxaldehyde, 5-methyl- CgHgO2 6.77
4. Formamide, N-[1-[(1-cyano-2-methylpropyl) hydroxyaminol-2-methylpropyl]- CioH19N30, 6.94
5. Oxazolidine, 2,2-diethyl-3-methyl- CgHy7NO 6.74
6. Oxirane, [(hexadecyloxy)methyl]- CioH3505 9.27
7. 2H-Tetrazole, 2-(1,3-dioxolan-4-ylmethyl)- CgH1oN4O> 9.76
8. Furylhydroxymethyl ketone CeHgO3 9.94
9. 2,3-Dimethylfumaric acid CgHgO4 1046
10. 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- CeHgO4 11.63
11. 2-Furanone, 3,4-dihydroxytetrahydr C4HsO 12.96
12. d-Ribo-hexos-3-ulose CeH1006 13.62
13. 5-Hydroxymethylfurfural CeHeO3 1397
14. d-Mannose CgH1-04 14.89
15. Tetradecanoic acid, 2-hydroxy- Ci4H2803 15.25
16. 5-(Hydroxymethyl)-2-(dimethoxymethyl) furan CgHy,04 15.87
17. 1,2,3-Benzenetriol (Pyrogallol) CgHeO5 17.93
18. Desulphosinigrin CyoH7NOgS 19.49
19. D-Allose CgH1506 20.64
20. 3-tert-Butyl-4-hydroxyanisole (also known as 3-BHA, which is a potent antioxidant) Ci1H160, 22.66
21. Benzoic acid, 4-hydroxy-3,5-dimethoxy- (also known as Syringic acid) CoH100s 28.09
22. n-Hexadecanoic acid Ci6H3,0, 31.03
23. Hexadecanoic acid, ethyl ester CigH3605 31.70
24. 9,12-Octadecadienoic acid (Z, Z)- (also known as Linoleic acid) CigH3,0, 3423
25. 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl ester, (Z, Z, Z)- Co1H3604 3434
26. y-Sitosterol CooHs500 5251

present in the plant extracts are studied with reference
to hydrogen atom transfer (HAT), single electron trans-
fer (ET), reducing power, and metal chelation assays
[33]. Therefore, in the screening of antioxidant activity
of LFE, it showed strong scavenging capacity against
DPPH radical, singlet oxygen, superoxide radical, NO-
radicals and hydroxyl radical in a dose dependent way
(Fig. 1 and Table 1). Total antioxidant activity of LFE’s
was found similar to trolox (standard compound) in
neutralizing the radical cation ABTS** (Fig. 1a). Hypo-
chlorous acid is known to get produced from the site of
inflammation resulting from the oxidation of Cl™ ions by
the neutrophil enzyme, myelo-peroxidase. The radical,
HOCI is known to degrade heme-prosthetic group and
inactivate the antioxidant enzyme, catalase. The HOCI
scavenging activity of the LFE corresponded with the in-
hibition of catalase deactivation (Fig 1i and Table 1).
Reducing power is also one of the measures to confirm
antioxidant activity and thus could serve as an indicator
of potential antioxidant activity [34]. In this study, the

reducing power of LFE was found comparable with
standard compound ascorbic acid (Fig. 1k). It was con-
jectured that compounds with chelating activity can in-
hibit lipid peroxidation by stabilizing transition metals.
Our results have indicated that the chelating effect of
LFE would be at least partly beneficial in protecting
against oxidative damage, but not efficient as EDTA.
The results also showed that LFE could protect erythro-
cyte membrane stabilizing activity better than the stand-
ard compound quercetin by means of scavenging
superoxide radicals (Table 1).

Our results revealed the presence of high contents of
phenolic and flavonoids in LFE, which is similar to an
earlier report [32]. Phenolics and flavanoid compounds
are capable of scavenging singlet oxygen and various free
radicals [35]. They may also help to prevent diseases as-
sociated with oxidative stress, such as atherosclerosis,
cancer and neurodegenerative diseases [36]. In this
study, results of cytotoxic activity in murine spleenocytes
and human MCF 7 and HepG2 cell lines have shown no
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inhibition in growth, thus ruling out toxic effect of LFE
on mammalian cells (data not shown). Taken together
all the results, we may say with caution that LFE is per-
haps safe for human consumption.

Moreover, it is essential to confirm in vitro results with
in vivo assays. A common hepatotoxin, CCly, is generally
used to induce hepatic damage in animal model to
understand the extent of tissue damages for correlating
conditions that happen in human beings during acute
hepatitis [37]. In this perspective, we have used mice as
a model animal to check CCly-induced hepatoxicity and
subsequent hepato-protection with the aid of LFE. When
mice is fed with CCly, cytochrome P450 (liver enzyme)
metabolises it to two trichloromethyl radicals, CCl; and
CCI300;, by cleaving the carbon chloride bond of car-
bon tetrachloride [38]. The trichloromethyl radicals gen-
erated from CCl; initiate free radical-mediated lipid
peroxidation, which in turn leads to the accumulation of
oxidation products causing apoptosis or necrosis in liver
tissues [39]. We have found that LFE can heal CCl, in-
duced damaged liver in mice (Fig. 3). In case of acute
hepatic damage (due to toxicity) in human beings, sily-
marin, an antioxidant flavanoid, is prescribed as a heal-
ing agent [40, 41]. The same compound, sylmarin, was
used as the control preventive agent in our experiment.
Results have shown that exposure to CCl, caused signifi-
cant difference in body, liver and relative liver weights
with respect to the control group. Reduction in body
weight and increment in liver weight took place in CCly
intoxicated mice with respect to the control group. Due
to CCly toxicity, relative liver weight of CCl, treated
mice was found much higher than the control (Table 2).
It is known that liver weight generally increases due to
hepatic damage inflicted by trichloromethyl radical [42].
Liver weight may also increase due to consequent liver
fibrosis; and hypertrophy could therefore arise due to ac-
cumulation of glycogen in hepatocytes [43]. Hence,
changes in body and liver weight after CCl, intoxication
provides direct evidence to the overall hepatic damage.
Treatment with LFE (250 mg/kg body weight) has sig-
nificantly prevented subsequent liver enlargement in
mice. Lowering of liver or relative liver weight in LFE
treated mice compared to CCly group reflected preven-
tion of fatty liver formation on CCl, toxicity. On other
hand, weight gain was restricted in LFE treated group as
compared to control (untreated) groups (Table 2), for
which no definite explanation could be made; and it may
be due to presence of some anti-diabetic and anti obesity
compounds in LFE.

It is known that in case of extensive hepatic damages,
enzymes, like AST and ALT, leave the confinement
(within liver tissue) and escape into the circulatory sys-
tem [44, 45]. Hence, we have studied the levels of AST
and ALT in the serum of the diseased mice compared to
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the untreated control. Serum AST and ALT levels were
found to increase markedly in CCl, intoxicated mice
clearly indicating altered permeability of membranes and
hepatotoxicity. Interestingly, the level of AST and ALT
were significantly reduced by administration of LFE
(Table 3). Thus it was revealed that LFE can increase the
structural integrity/stabilization of plasma membrane,
which also supported the in-vitro erythrocyte membrane
stabilizing activity. Moreover, restoration of structural cell
integrity in case of treatment with LFE was supported by
histology (by comparing the histological sections, Fig. 3).
To understand more about the hepatoprotective effect
rendered by LFE, the total protein concentration was mea-
sured. Total protein level, which came down, in CCl, in-
toxicated mice was partially restored by treatment with
LFE. The role of antioxidant activities of LFE in vivo was
studied by measuring activities of antioxidant enzymes
catalase (CAT) and the levels of GSH and TBARS in the
liver. TBARS (markers of lipid peroxidation) is used as a
main marker of hepatocellular injury [46]. Moreover, per-
oxidation of polyunsaturated fatty acids at the cell mem-
brane leads to a cytotoxic by-product, malondialdehyde
(MDA). During oxidative stress in liver, the amount of
MDA determines the extent of oxidative damage [47]. A
lower MDA value in liver tissue of mice indicated a stron-
ger protective activity in samples. Our results have shown
higher concentration of MDA in CCl, treated group while
silymerin or LFE (High dose) group significantly reversed
these changes through reduction of lipid peroxidation and
decreased production of free radical derivatives. This in-
ference was substantiated by the observed decreased level
of TBARS. GSH (non-enzymatic antioxidants) is the
major non-protein thiol that plays a vital role in maintain-
ing the body’s antioxidant defence mechanism [48, 49]. It
was found that the level of GSH in the liver dropped down
in CCly intoxicated mice. It is of general perception that
accessibility of the liver cells to potential antioxidant mol-
ecules may prevent gross depletion of GSH to save the
organ from destruction by free radical assault. In our case,
perhaps, feeding of LFE has probably played an important
role in restoring the normal intracellular GSH level. Cata-
lase is an antioxidant enzyme which promotes the degrad-
ation of H,O, into water and oxygen [50]. Inhibition of
enzymatic activities like catalase activity cause accumula-
tion of superoxide radical and H,O,, which attenuates a
cascade of free radical formation. Catalase was found to
be increased in LFE (High Dose) or silymerin treated
group compared to CCl, treated group (Fig 2 a and b).
This restoration of catalase activity in LFE indicated the
potential of LFE as antioxidant and was thus comparable
to the known antioxidant, silymerin. These findings have
clearly indicated that LFE is capable of protecting the liver
by means of improving the enzymatic and non-enzymatic
antioxidant defense systems, thus significantly reducing



Tiwary et al. BMC Complementary and Alternative Medicine (2017) 17:55

the generation of in vivo free radicals activated by CCl,.
Histopathological observations have provided phenotypic
support in favour of LFE’s hepato-protective role in curb-
ing the intensity of damage done by CCl, intoxication.
The occurrence of various signs of liver injury (Additional
file 3: Table S1) confirmed extensive hepatic tissue damage
in CCl, group. CCl, intoxication led to tissue degener-
ation in liver, which was clear from prominent signs of ne-
crosis. Silymarin and LFE administration demonstrated
regeneration of healthy liver tissue with much lesser signs
of injury as compared to CCl, treated group. The micros-
copy has enabled to distinguish between prominent nu-
cleus containing organized hepatocytes (control) and the
deformed nucleus in ameboid overlapped hepatocytes ob-
served in CCly treated mice’s liver (Fig 3). Restoration of
tissue integrity (tight packed cells) was also observed in
Silymarin or LFE group. The fatty infiltrations, due to lipid
peroxidation, were prominent in CCly group, but found
lower in silymerin or LFE (High Dose) treated ones.
Nevertheless, treatment with LFE demonstrated promin-
ent restoration in hepatocytes. The reduced cytoplasm
vacuolization, mononuclear infiltration, prevention of ne-
crosis, and normalized sinusoidal spaces established the
hepatoprotective potential of LFE in recovering normal
hepatic histoarchitecture.

The antioxidant components present in the LFE was cor-
related with GCMS data (Additional file 5: Figure S5). The
phytochemicals, sitosterol, 1,2,3-benzenetriol (pyrogallol),
3-tert-butyl-4-hydroxyanisole (also known as 3-BHA), syr-
ingic acid, oxazolidine-2, 4-dione, 9,12- Octadecadienoic
acid and furan-2- carboxylic acid-3-methyl- trimethyl silyl
ester identified from the GCMS data (Table 4) have re-
ported antioxidant activities [51-56]. Sitosterol has anti-
hepatotoxic activities which normalizes serum transminase
and hepatic antioxidant enzymes in hepato-compromised
animals [55]. There may be some more phytochemicals
(remained in the GCMS data beyond the known ones) in
LFE which are yet to be identified as hepatoprotective
agents. In one of our previous reports, it was shown that
multiple constituents of a PPE may act synergistically or ad-
ditively to affect the biological system [57]. There are also
other reports on using combination of compounds to gain
higher therapeutic effectiveness over singly administered
compound(s) [58]. Based on this philosophy, we propose
the therapeutic prospect of the flower extract of Lagerstroe-
mia speciosa (L.) Pers in treating liver damages (Additional
file 2: Figure S2).

Conclusion

This study has revealed the antioxidant activity of L. spe-
ciosa flower extract (LFE), more comprehensibly, by con-
ducting in-vivo studies in addition to in vitro tests. LFE
can scavenge or neutralize free radicals of different origin
and chelate ferrous ion. There was no toxic effect of LFE
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on murine spleenocytes and human MCF7 and HepG2 cell
lines. The in-vivo tests have indicated that feeding of LFE
has several manifestations, like reduction of MDA level, in-
crease in GSH level, and restoration of catalase in CCl, in-
toxicated mice, to reverse liver damage to a considerable
extent. Furthermore, GCMS analyses have confirmed the
presence of various compounds reported as potential anti-
oxidant. These compounds may have contributed towards
protection against damages inflicted by free radicals. Sum-
ming up all the properties shown by LFE, L. speciosa
flowers could be a promising candidate as functional food,
obviously after satisfying FDA recommendations. The fact
remains that even in the face of rapid urbanization, major-
ity of Indians live in the villages. There are several tribal
pockets. Liver damages (both alcoholic and non-alcoholic
damaged liver patients are innumerable) are rampant
among the rural people. Popularizing such drink which
people themselves can prepare will be beneficial to the so-
ciety at large (Additional file 2: Figure S2).
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